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Summary. The absorption bands of the C=O Stretching vibrations of a series of thirty-nine substi- 
tuted Z-3-methylene phthalides (1a-s, 2a-h, 3a-f, 4a-e, and 5a-c) were measured in CHC13 and 
CC14. The two-level Fermi resonance effect on the infrared spectra of the above compounds was 
investigated after deconvolution and band separation. The wave numbers of the unperturbed funda- 
mental C=O stretching vibrations exhibit excellent linear correlations with Hammet's constants of 
substituents and 13C NMR chemical shifts of the C=O group. 
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Fermi-Resonanz in substituierten Z-3-Methylenphthaliden 

Zusammenfassung. Die Absorptionsbanden der C=O-Streckschwingung von 39 substituierten Z-3- 
Methylenphthaliden (1a-s, 2a-h, 3a-f, 4a-e und 5a-c) wurden in CHC13 und CC14 vermessen. 
Dutch Dekonvolution und Bandentrennung konnte der Einflut5 Fermi-Resonanz auf die Infra- 
rotspektren der obengenannten Verbindungen untersucht werden. Die Wellenzahlen der ungest6rten 
C=O-Streckschwingungen ergeben ausgezeichnete lineare Korrelationen mit den Hammetschen 
Substituentenkonstanten und den 13C-NMR-Verschiebungen der Carbonylgruppe. 

Introduction 

Several c~, f l-unsaturated and aromatic six- and f ive-membered lactones exhibit  a 
significant splitting o f  their absorption bands in the region of  the carbonyl  stretc- 
hing vibrations [1-5]. Such a splitting is assumed to result f rom a Fermi  resonance 
of  the fundamenta l  C=O stretching vibration with the first overtone of  an out-of- 
plane C-H deformat ion vibration of  the unsaturated or aromatic part of  molecule  
[ 1, 3, 4]. The infrared spectra o f  several substituted Z-3-methylene  phthalides have 
been investigated previously [6-9] ;  however,  neither a convincing experimental  
evidence nor  a detai led theoretical  s tudy of  the Fermi  resonance effect  has been 
reported for these substances so far. 
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The aim of the present work was to record the infrared spectra of a series of 
substituted Z-3-methylene phthalides ( la-s ,  2a-h, 3a-h, 4a-c, 5a-c) in CHC13 and 
CC14 in the region of 1850-1700 cm -1 under precise quantitative conditions and to 
investigate in detail the splitting of the absorption bands by Fermi resonance. 
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Fig. 1. Infrared spectra of Z-3- 
phenylmethylene phthalide (le) in 
mixtures of n-hexane and CHC13; 
a: 3:0, b: 2:1, c: 1:2 

Results and Discussion 

The infrared spectra of Z-3-phenylmethylene phthalide (le) in mixtures of 
n-hexane and trichloromethane are shown in Fig. 1. In pure n-hexane, a strong 
absorption band at 1796.8 cm -1 belonging to the fundamental C=O stretching 
vibration occurs; only a weak shoulder at its lower wave number side indicates a 
little splitting. With increasing amount of the more polar trichloromethane in the 
mixture, the splitting of the absorption band becomes more pronounced. Finally, in 
pure trichloromethane a clear doublet absorption band with peaks at 1792.0 and 
1774.8 cm -1 is observed. The above described behavior of compound le  in n- 
C6H14/CHC13 mixtures conspicuously resembles that of cyclopentanone, a fact 
which can be regarded as a strong experimental evidence of the presence of Fermi 
resonance interaction [ 10]. 

The infrared spectra of other substituted Z-3-methylene phthalides behave si- 
milarly. In tetrachloromethane, all compounds exhibit more or less unstructured 
v(C=O) absorption bands. In trichloromethane, significant splitting caused by 
Fermi resonance interactions occur (with the exception of compounds 5a-c; (Table 
1). Obviously, in this solvent the wave numbers of the fundamental C=O stretching 
vibration (v01 (C=O)) are close to the wave numbers of the first overtone of an out- 
of-plane C-H deformation vibration (c~02(CH) ~ 2~:01 (CH)), resulting in an inter- 
molecular vibrational effect (Fermi resonance). The absence the v(C=O) band 
splitting and the Fermi resonance effect in phthalide itself [1] and in Z-3-alkylidene 
phthalides (5a-c) suggests that the first overtone of the ~01 (CH) vibration of the 
substituted phenyl ring is probably involved in the vibrational interaction. 

It has been shown that Fermi resonance can influence the effects of substituents 
on the wave numbers of carbonyl stretching vibrations in several series of aromatic 
compounds [11, 12]. This implies that, if a correlation between spectroscopic and 
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Table 1. IR spectroscopic data (cm -1) of compounds 1-5 prior to band separation 

Unresolved data (CHC13) 
Peak A Peak B co01 (CH)(CHC13) u01 (C=O)(CC14) 

l a  1783.5 1764.8 862.0 1790.8 
l b  1788.6 1768.0 870.0 1792.8 
lc  1787.6 1762.6 860.8 1794.4 

l d  1786.2 1768.0 869.2 1795.2 

le  1792.0 1774.8 870.4 1796.8 
I f  1788.8 1769.6 868.0 1796.4 
lg  1788.8 1771.6 868.4 1796.0 

l h  1790.4 1771.0 870.4 1798.0 
l i  1787.2 1774.0 869.5 1798.8 
l j  1790.0 1778.8 876.8 1796.8 

l k  1790.4 1778.5 860.8 1795.2 
11 1788.8 1776.0 865.0 1798.8 
l m  1790.0 1775.3 887.6 1800.4 

I n  1791.0 1774.2 867.2 1801.6 
lo  1790.8 1775.0 870.4 1799.2 
lp  1793.6 1779.2 864.8 1802.4 
l q  1788.8 1770.8 870.2 1792.8 

l r  1803.4 1792.8 872.3 1803.2 
Is 1798.4 1782.4 876.8 1802.4 

2a 1782.4 1764.4 869.2 1784.8 

2b 1788.2 1768.8 870.4 1794.4 
2e 1787.2 1770.4 873.1 1794.8 
2d 1790.0 1772.3 872.4 1796.8 
2e 1785.6 1775.0 870.4 1800.4 

2f 1782.4 1769.2 870.4 1798.8 
2g 1786.8 1776.2 872.4 1800.4 
2h 1792.0 1784.0 871.6 1802.8 

3a 1776.4 1763.2 873.6 1786.8 
3b 1787.2 1776.0 872.9 1795.2 

3c 1784.4 1766.4 870.4 1793.6 
3d 1786.0 1766.4 873.6 1795.2 
3e 1784.8 1766.4 862.0 1795.2 

3f 1789.6 1770.0 865.0 1795.2 
4a 1786.0 1768.0 867.2 1794.8 
4b 1782.4 1764.8 871.0 1791.6 

4c 1792.0 1772.0 873.0 1799.6 
5a 1774.5 - - 1788.8 

5b 1775.9 - - 1790.0 
5c 1783.6 - - 1796.4 



Fermi Resonance in Substituted Phthalides 

Table 2. Fermi doublet components (cm -1) for compounds 1 -4  in CHC13 
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Perturbed data a Unperturbed data b 

Peak A Peak B u01(C = O) cJo2(CH) WAB 

la  1787.2 (1.56) 1764.6 (5.77) 1769.4 1782.4 9.2 
lb  1785.0 (1.99) 1767.9 (4.94) 1773.9 1782.9 9.2 
le 1788.1 (2.46) 1768.2 (4.23) 1775.5 1780.8 9.6 
l d  1789.6 (2.46) 1770.2 (4.01) 1777.6 1782.2 9.4 
l e  1793.1 (1.61) 1771.8 (5.23) 1776.8 1788.1 9.0 
I f  1789.8 (3.05) 1770.5 (3.83) 1779.1 1781.2 9.6 
lg  1791.3 (2.30) 1772.2 (3.87) 1779.3 1784.2 9.2 
l h  1791.3 (3.34) 1772.3 (3.00) 1782.3 1781.3 9.5 
l i  1792.4 (2.47) 1773.9 (3.98) 1781.0 1785.3 9.0 
l j  1785.0 (2.52) 1777.6 (4.36) 1780.3 1782.3 3.6 
l k  1791.9 (2.66) 1774.1 (3.87) 1781.3 1784.6 8.7 
11 1791.1 (3.14) 1773.1 (3.41) 1782.1 1782.9 9.4 
l m  1789.6 (2.83) 1777.2 (3.83) 1782.5 1784.3 6.1 
In  1794.8 (2.66) 1776.7 (3.90) 1784.0 1787.5 8.9 
lo  1792.4 (3.50) 1775.1 (3.02) 1784.4 1783.1 8.6 
lp  1796.1 (3.33) 1778.9 (2.44) 1788.8 1786.2 8.5 
l r  1798.0 (3.63) 1781.8 (2.14) 1788.5 1785.6 8.3 
Is 1797.7 (1.42) 1784.4 (4.98) 1787.3 1794.7 5.5 
2a 1800.8 (3.91) 1781.4 (1.96) 1794.3 1787.9 9.1 
2b 1790.1 (1.96) 1769.1 (5.01) 1775.0 1784.2 9.4 
2c 1784.0 (2.94) 1771.0 (3.14) 1777.3 1777.7 6.5 
2d 1790.7 (3.48) 1771.9 (3.72) 1781.0 1781.6 9.4 
2e 1790.3 (3.60) 1772.8 (2.89) 1782.5 1780.6 8.7 
2f 1787.5 (4.41) 1769.2 (1.80) 1782.2 1774.5 8.3 
2g 1789.7 (3.82) 1773.1 (3.24) 1782.1 1780.7 8.3 
2h 1792.0 (3.08) 1780.8 (2.85) 1786.5 1786.3 5.6 
3a 1777.1 (3.75) 1764.1 (4.15) 1770.3 1770.9 6.5 
3b 1785.4 (2.51) 1774.6 (4.61) 1778.4 1781.6 5.2 
3e 1785.1 (4.99) 1765.8 (1.78) 1780.0 1770.9 8.5 
3d 1786.5 (4.68) 1765.9 (1.97) 1780.4 1772.0 9.4 
3e 1785.4 (5.15) 1765.7 (1.85) 1780.2 1770.9 8.4 
3f 1790.7 (2.57) 1769.7 (0.48) 1787.4 1773.4 7.6 
4a 1787.0 (3.62) 1767.1 (3.45) 1777.3 1776.8 9.5 

a after band separation (integrated intensities (1 • mol 1 . cm-2) in parentheses); b corrected for Fermi resonance 

structural properties is to be assessed, wave numbers free from Fermi resonance 
effects have to be obtained; only those will depend solely on the C=O bond force 
constants [13]. For this reason, we applied relations based on the method of 
Langseth and Lord as improved by Nyquist et al. for cases involving two-level 
interactions [14] and calculated the approximate wave numbers of bands corrected 
for Fermi resonance effects (Table 2). The extent of these effects depends on the 
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Table 3. Linear correlations for compounds 1-3 (y = ax  + b); 

A. Perj6ssy et al. 

y x n a r b S c F d a b 

(solvent) (solvent) 

15 u01(C = O) cr 18 0.993 0.62 1104 14.00 4-0.42 1777.7 
(CHC%) 

1 u(C=O) e 21 0.925 1.33 113 9.36 4- 0.88 1795.6 

(CCl ) 
1 u(C=O)A g cr 20 0.738 2.71 22 8.35 4- 1.80 1789.3 

(CHC13) 
1 u01 (C=O) 6(C=O) 12 0.983 0.91 296 -13 .00  + 0.75 3947.6 

(CHC13) (CDC13) 
1 u01 (C=O) 6(C=O) 12 0.948 1.06 88 -8 .20  :t: 0.87 3164.7 

(CC14) (CDC13) 
1 •(C=O)A g 6(C=O) 12 0.697 2.47 9 -6 .27  4- 2.04 2835.5 

(CHC13) (CDCI3) 
2 f u01(C=O) ~r 10 0.931 1.39 52 11.09 4- 1.54 1779.2 

(CHC13) 
2 f y(C=O) cr 10 0.916 1.12 41 7.99 i 1.24 1796.9 

(CC14) 
2 f u(C=O)Ag cr 10 0.428 2.55 2 3.78 ± 2.83 1789.5 

(CHC13) 
3 uOl (C=O) cr 5 0.996 0.44 373 11.16 ± 0.58 1777.8 

(CHCI3) 
3 u(C=O) ~r 5 0.945 1.38 25 9.09 ± 1.82 1793.2 

(CC14) 
3 /,,(C=O)A g o- 5 0.423 5.41 0 0.52 4- 7.14 1773.3 

(CHC13) 

a number of compounds used in the correlation; b correlation coefficient; c standard deviation; d F-score; 
e compounds lh  and lo  omitted; f compounds lh  and lo  included; g perturbed data, for peak A after band 
separation 

degree of interaction between the wave numbers of bands involved [14, 15]. It 
has been found that the more intense band in the Fermi doublet is associated with 
the fundamental v01 (C=O) stretching vibration, whereas the less intense band can 
probably be assigned to the first overtone (w02(CH)) of the out-of-plane C-H 
deformation vibration (w01(CH)). The vibrational interaction between v01 (C=O) 
and w02(CH) in compounds 1-4  can be expressed by the Fermi resonance co- 
efficient wAB which varies with the structure of investigated compound in the 
region of 9 .6-3.6 cm -I. The components of the Fermi doublets of compounds lq,  
4b, and 4c could not been determined because of the low solubility of these 
substances in trichloromethane. 

The v01 (C=O) wave numbers measured in CC14 (Table 1) and the unperturbed 
v01 (C=O) wave numbers, i.e. those corrected for Fermi resonance, in CHC13 
(Table 2) were correlated with Hammett's substituent constants [16] as well as with 
13C NMR chemical shifts of the carbonyl group [17]. The statistical results of these 
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Fig. 2. Dependence of the wave numbers of the unperturbed fundamental C=O stretching vibration 
(CHC13) on the Hammett ~r values for meta- and para-substituted Z-3-naphthylmethylene phthalides 
(o )  and Z-3-naphthylmethylene phthalides (o) 

correlations are listed in Table 3. It is evident that all correlations for unperturbed 
vm(C=O) wave numbers in CHC13 are statistically most significant, especially 
with respect to values reported previously [6, 9] where the arithmetic means of the 
wave numbers of the two peaks of the unresolved doublet have been used for 
analysis. 

In the series of m e t a -  and p a r a - s u b s t i t u t e d  Z-3-phenylmethylene phthalides, an 
excellent linearity of v01 C=O vs. c~ was obtained for twenty-one experimental 
values (Fig. 2). The correlation includes also a few 2, 4- and 3, 5-disubstituted 
compounds, the cr values of which were calculated assuming additivity of O-p and 
or,, values. The wave numbers of Z-3-1-naphthylmethylene and Z-3-(2-naphthyl- 
methylene) phthalides (3b and 4a) also fit the correlation quite well if corres- 
ponding o-~ values are used for 1- and 2-naphthyl substituents. In the case of 
o r t h o - s u b s d t u t e d  Z-3-phenylmethylene phthalides, Crp values were used for or tho-  

substituents, and the graph in Fig. 3 is a result of correlating ten experimental 
values, including two 2, 4-disubstituted derivatives ( lh,  and lo). Z-3-(2-Hydro- 
xyphenyl methylene) phthalide (2a) has been excluded from the correlations 
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Fig. 3. Dependence of the wave numbers of the unperturbed fundamental C=O stretching vibration 
(CHC13) on the Hammet  ~ values for ortho ( ,)  and ortho, para (o) substituted Z-3-phenylmethylene 
phthalides; []:  omitted from correlation 

because of an intermolecular hydrogen bond formed between the hydroxy group 
and the lactone ring oxygen or the side chain double bond. Fig. 4 shows that the 
unperturbed v01(C=O) wave numbers correlate also very well with ~(C=O) avai- 
lable for twelve selected substituted compounds of series 1 [17]. The correlations 
for the series of 4-substituted 1-naphthylmethylene derivatives (3a-f) using O-p 
constants are just illustrative and less significant due to the small number of co- 
mpounds available. It is evident from the results in Table 3 that the wave numbers 
of the carbonyl stretching vibration are more sensitive to substituent effects in the 
polar solvent, i.e. trichloromethane, than in the less polar tetrachloromethane. The 
efficiency of the transmission of substituent effects for the series ofpara- and meta- 
substituted compounds (1) is by 20% higher than those estimated for ortho-subs- 
tituted (2) and 1-naphthyl derivatives (3). 

Finally, it can be concluded that the splitting of the strong absorption bands 
of substituted Z-3-methylene phthalides in the region of 1850-1700 cm -1 arises 
from Fermi resonance and the wave numbers of unperturbed v01(C=O) vibra- 
tion correlate excellently with substituent constants and corresponding 13C NMR 
data. 
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Fig. 4. Dependence of the wave numbers of the unperturbed fundamental C = O stretching vibration 
(CHC13) on the 13C NMR chemical shift (CDC13) of the C = O group for substituted Z-3- 
phenylmethylene phthalides 

Experimental 
The preparation and some properties of compounds 1-5 have been described previously [18-25]. 
The substances were purified by recrystallization and, in the case of 5c, by distillation prior to IR 
measurements. 

The IR spectra were recorded on a Zeiss Specord M-80 spectrometer at room temperature using 
NaC1 cells of 0.1, 0.5, and 1.0 cm thickness. The concentrations of the solutions were 8.10 .3 
m o l - d m  -3, 2.10 3 tool- dm -3, and 8.10 .4 mol.dm 3. Peak positions were determined with an 

accuracy of +0.2cm -1 against polystyrene standard spectra. The absorption intensities of the Fermi 

doublet components were determined after mathematical deconvolution and separation of overlapping 
bands. Curve analysis was performed by a digital curve-fitting routine. For establishing evidence 
of Fermi resonance effects, the IR spectra of 2.10 .3 tool.din -3 solutions of 3-phenylmethylene- 
phthalide ( le)  in mixtures of n-hexane and trichloromethane were measured using a NaC1 cell and 
compared with those obtained for cyclopentanone under the same conditions. All solvents employed 
in this investigation were of spectroscopic purity (Uvasol, Merck). 
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